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The equations of motion of two linear periodic chains of non-linearly interacting particles axe considered in the long-wave 
approximation. The system of equations obtained is a model for describing wave processes in two-component media. Methods 
of group analysis (see, for example, [1]) are used to pick out the submodels that admit of the largest group of point mappings. 
Particular invariant soluttions are presented resented for two submodels with obvious mechanical interpretations. It is shown 
that, if the potential of the non-linear interaction can be expressed as a ha .rnaonic function of the relative displacement of particles 
in the chains, and the acoustic velocities of non-interacting chains are different, the system is a special type of soliton filter; the 
allowed milton velocities are determined. A few solutions describing the long-wave dynamics of the system are presented, assuming 
the presence of additio~Lal shear forces. 

1. Consider two coupled linear periodic chains of particles (see Fig. 1), where the mass of any particle 
of  the "upper"  chain is ml  and of the "lower" chain m2. In the equilibrium configuration the distance 
between adjacent particles in each chain is a. The particles may move only along smooth tracks parallel 
to t h e X  axis. The interaction between next neighbours in the chains is considered in the usual harmonic 
approximation, but the interaction constants may be different: 131 and I]3. The function characterizing 
the interaction between the chains depends on the displacements of matching particles (p1 and Pn 2 ). 
The precise form of the function is for the moment  not essehtial; it will be an arbitrary element in the 
group classification problem to be considered below. 

L e t  Un be the displacement of particle Pn 1 and w n that of particle p2.  The dynamics of the system is 
described by the equations 

ml//n = [31 (u,+ t - 2u n + un_ I ) - OH(u,,  w ,  ) / Ou~ 

m2fi~,, = 112 (w,,+t - 2wn + Wn-I ) - OH(un, wn) I Own 
(1.1) 

(the dot stands for differentiation with respect to time); H(un, wn) is the energy of interaction of Pn 1 
and Pn 2 . 

Changing to dimensionless variables 

/ ~ l / q  

c x ,m w t ' = - - t ,  .~=-- ,  f i= - - ,  ~ =  2 / . ~ = ~  
m, talc? a a a a 

2 1] .a 2 ) 
C 2 --  C2 --  112ml c/2 = r , -  , i = 1,2 

1]1m2 mi 

N 

introducing the force function f ( ~ ' ,  ~ ' )  = - H  (if', ~ )  and taking the long-wave approximation, we 
deduce from (1.1) the following system of partial differential equations (the tilde is omitted) 

u , , -  uxx =J~,(u, w), w , , -  c2wx~ =j~(u, w) (1.2) 

2. Table 1 lists the results of classifying equations (1.2) by groups of point transformations. 
I f  fuw(u, w ) =  0, s)~tem (1.2) splits into two independent Klein--Gordon equations, whose group 
classification has 2 already been carried out- by Lie (see, for example, [2]). The case c = 1 has 
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been investigated [3], the highest symmetries of the equations have been determined and cases of 
complete or partial integration have been described. These two cases will therefore be omitted in what 
follows. 

The classification is carried out up to all continuous equivalence transformations obtained by the 
infinitesimal method [1] and the obvious discrete transformations 

t = a l t + a  2, f c = a l x + a  3, ~ = a 4 u + a s ,  f v = a 4 w + a  6, f :=a~a~2f+a7  

t---~-t,  x--* x; t---~ t, x---~-x; (2 .1 )  

U ~ --U, W --'> W; U --') tl, W ~ --W 

t ~ t, X--* X/C; U---> W, W'-> U, C"> I/C 

(ai 0 ~-" 1, 2 . . . . .  7) a r e  a r b i t r a r y  c o n s t a n t s  s a t i s fy ing  t h e  n o n - d e g e n e r a c y  c o n d i t i o n  ala4 ;~ 0). 

Table 1 

J~u, w) Admissible operators  

Arbitrary function Xt = ~ ,  X2 = ~x 

o . 0  

F ( z ) g ¢  8 -  for a ~ 2  

F(z)¢ A + : +  1 for o = 2  

e"F(~Ju- w) X3 = t ~ +  X~x _ 2( ~u +~_~ l 
F(z) ~ ¢.¢z 

r(u/w)+~lnu ~ = tTt + x ~  +, .~+ ~T~. ~ r(z).itn(S-~) 
r(S, , - . )+  A u . + ( ~ - ~ ) J  /2 X~ = , : t , x ) ( ~ + S ~ / .  i = 3 , 4 , 5 , 6  

b~"(z) ;* 0 

~2 S¢ - A Ix 2 = ~¢c 2 - A % = cos~xcosgt, q0 4 = sin;kxsinl~t 
~) --~,,o, ~ , , o ,  

% =cos~singt, ~o s =sin~xcosl~t 

b) ~,=0, ~2 A ~3=xcos~, q~4=xsin~ 
= - 8 " = - £ ;  tp~ =coslu, % =sinlu  
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"fizble 1--(continued) 

)~u, w) Admissible operators 

Arbitrary function X i = ~, X 2 = ~- 

c) ~ . ~ = b = ¢ ,  I~=0 

F(&, - w) + Zuw - k,,~/2 

F"(z)~O 

£ 

F ' (O  #0 

t ) F ( O = ~ + B z ,  o ~ 0 ,  1,2 

2) F(z) = et a + Bz 

3) F(z) = ¢lnz + Bz 

4) F(z)  = fzlnz 

Art2 + B w 2  + u w +  C u + D w  
2 2 

a)AB ~e I, C = D = 0 ;  

b)AB = I 

q~s =cospt. (p~ =sinpt 

q).j m I COS),.X, ~p4 z=/sin ~Ur 

(PS =cos)z. cp~ =zinX,x 

X , - . , ( t , x ) ( ~ + 8 ~ - ) .  i=3,4,5,6 

(I)3 =cor, Xx cos~, Ip4 = .in~r sin~t, 

cps = co~.x sin~a. ~Ps = sinX.x cos~a. 

Xlm.i(t,x)(-~U+~-~! , i - 3.4,5.6 

q)3 = ' Ix ,  ¢P4 = t, ~S gX, q~6 = I 

O ~ 2 ( a a ~  x, : , g + x g +  

X, = t ~ +  x~z + 2~w + , ( t , x ) ( ~ +  f l ~ )  

- . -  , :  
- = l o t  + ~ ,t.~ + " o , ,  + . , . ,  ~' t o .  o . , :  

,<, 

x. ,  x = q,(t,x).~.~+ x(i,x)-~, 

where 9. - 9~ = A9 + X, X. - cizx~ = 9 + BX 

a a 
x.~ =.~+w~w; 

x.~=(,+ D-aC t2) a + 
2(A+ 8) J~ 

,~(D_~C)t~+AC+I~)a__ 
+ iv 2(A+B) A+B )~w 

Notes to the table: 
1. c2 ~ 1, f~(u,w)#O. 
2. A, B, C, D and ~ are arbitrary real constants, 8 is a positive and 8- is a non-negative real constant; e = -+ 1, E" = 0, + 1. 
3. The constants k and IX take ~ or ima~ina~/avalues. 
4. ~f(t ,X) ---- ( 1 ~ C 2 -  ll)){[A~c ~ 4" S(1 + ~ ck)]t ~ -4- [A~ -#- S(1 -~ ~2)]x2}. 
5. Iff(u, w) = F(6u - w) + Au, where F"(x) ~e 0 up to equivalence as defined by (2.2), it may be assumed that A -- B - 0. 
6. Additional operaton; for intersecting subcases are listed only once. 
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The operator of an admissible point group has the form 

X = ~ l  a .2 a i a + 
+ Tx + 2 

~I =cIt +C 2, ~2 =Cix +C3, "ql =c,lu+tp(t,x), "fl2 =C4w+ V(t,x) 

where the functions 9(t, x) and ¥(t, x) satisfy the classifying equations 

tp# - q ~  = (2C I - C 4)fu + (C4u + 9) f , ,  + (C4w + v)fuw 

Yn - C2¥xx = (2CI - C4)f., + (C4u + ¢P)f,,w + (C4w + v) f ,~ ,  

Ci (i = 1, 2, 3, 4) are arbitrary constants. 
The classifying relation is 

(blu+b2)f u +(blw+b3)f w+b4f=bSu+brw+b 7 

where b i (i = 1, 2 , . . . ,  7) are constant coefficients. 
In the subcases the group of equivalence translations may be larger than (2.1). For example, i l l(u,  

w) = F(~Ju - w) + Au,  where 8 and A are constants, F"'(z) # 0 (the prime stands for differentiation 
with respect to the argument of  the function), all additional continuous transformations have the form 

?~=u+~, (v=w+5~,  ? = f + O  (2.2) 

where 

1. 0 = 0, ~ = astr + a9t + alor with arbitr.ary constants a8, a9 and alo; 
2. 0..= 0, ~ = ((c2t 2 + x2)/(2(c 2 - 1)))(.z~ - A ) ,  whereA satisfies the equation dA/da  = ~( .4c ,  5), 

A la=0 = A; 
3. 0 = K(A, c, 5)(5u - w), ; = 0¢(A, c, 5))/(25(c 2 - 1))[(1 + ~2c2)t 2 + (1 + 52)X2 l 

where * and 1¢ are arbitrary functions of their arguments. 

3. Let the force function have the formf(u,  w) = -(~u, w) 4. The variable change 

fi=Su, ~ = w ,  ? = 2 t ,  £ = 2 x  (3.1) 

then reduces Eqs (1.2) to the form (omitting the tilde) 

u , ,  - u~,. = --82(u - w p ,  w , ,  - c 2 w , ~  = ( u  - w) 3 (3.2) 

It can be shown that this submodel corresponds to the case in which particles P~ and p2 are coupled 
together by a Hooke spring, provided that un - Wn I <~ l, where I is the distance between the chains (the 
length of  the unstretehed spring). We must then assume that ~i 2 = m2/ml in (3.2). 

The following operators constitute a basis for the Lie algebra of Eqs (3.2), taking (3.1) into account 

x,=Tt, x2= , x3= u+ x, 

x , = t x  + , xT=t ; + x -. -WTw 
(3.3) 

Equations (3.2) also admit of reflections 

t ~ - t ,  x--->x; t--->t, x ~ - x ;  u - -~ -u ,  w--->-w (3.4) 

Let us consider some particular invariant solutions of Eqs (3.2). A solution invariant under the 
operator X2 + oX5 (~x = 0 or 1) has the following form (C1 and (72 are arbitrary constants; it may be 
assumed up to the first equivalence transformation (2.2) that C1 = (?2 = 0) 
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52 1 
U=l-'~p(t)+~, W=-l- '~P(t)+~ 

O~ 
2(1 + 82) [(1 + 82C2)t2 +(l+82)x2]+CIt+C2 

(3.5) 

where 

= -X.p 3 - It, X, = 1 + 8 2, ~ = (x(c 2 - 1) (3.6) 

The energy integral of Eq. (3.6) can be written as 

3 g 
(/~)2 +_.~P42 +21.tp-2E*=2E, E*=--dl.t~-~J 

To any number E > 0 there corresponds a bounded periodic solution of Eq. (3.6) which describes 
non-linear oscillations about the equilibrium positionp = -(IX / ~,)1/3 in the domainp e [Pl,.P2], where 
Pl andp2 are the least and greatest real roots, respectively, of the equation 2qo*/4 + 0t7 - E  = E. 

If ct = 0, the solution (3.5) is spatially homogeneous (this may be regarded as the case of extremely 
long waves) and may be expressed in terms of Jacobi elliptic functions, for example, as 

5 2 ( 4e  
U= 1+52 ~,1+82 j cn[(4E(l+82))¼t, k]=-82w, k2 =12 

The particles in the chains move in opposite directions, the oscillation amplitudes being the same only 
in the case 52 = 1 (ml = m2). In the limit as 8 ---> 0 (ml >> m2), we obtain a solution describing oscillations 
of the "lower" particles only 

u=O, w=(4E)¼cn[(4E)¼t, k], k2=l~  

A solution invari~mt under the operatorX1 + _x~2 + oX4 (a = 0 or 1, where 19 is an arbitrary constant) 
has the following form when 192 # 1, c 2, (1 + 82c2)/(1 + 52) (up to the first equivalence transformation 
(2.2), it may be assumed that C1 = C2 = 0) 

1l=a-1{82(1) 2 --c2)p(x--19t)+'q}, W=t~-I{(l--D2)p(x--19t)+'q} 

cr = 52(192 - c 2) + 192 _ 1 

11 = Ct(l + ~i 2 )19tx - ~-~ [(1 + 5 2 )t 2 + (1 + 5 2 )x 2 ] + CIx 190 + C2 2 

(3.7) 

where 

O" Or(1 - c 2 ) 

P " = - ~ ' I P  3 -IXl, kl = (192 _1)(192 _c2)  ' 121 = (192 _1)(192 _ c  2) (3.8) 

If kl > 0, formula (3.8) is identical with (3.6), apart from the notation. Consequently, the solutions 
of Eq. (3.8) in this case are bounded and describe periodic travelling waves. The waves may propagate 
at velocities in the :range 

192 ~ ]S, M[ u ]L, +o.[ 

S=min{1,c2}, M= 1 + 5 2 ,  L=max{l,c 2} 

In particular, when o~ = 0 we obtain a solution in the form of conoidal waves 

(3.9) 
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[, k t ) cn[(4Ek I )¼ (x - .00, k] = Ww 

U= 82('02 -c2) W= 82(.02 -c2) k 2 !  
O" ' 1 - - . 0  2 ' 2 '  

E > 0  

If ~,1 < 0, then (3.8) may be regarded as the equation of motion of a particle in the field of a potential 
well U(p) = - I ~,11 f / 4  + g~o, in which case no non-trivial bounded solutions exist. 

Using the reflections (3.4), which are admissible for equations (3.2), one can obtain solutions with 
other sign combinations. 

4. Let the force function have the form f(u, w) = cos (Su - w) - 1. The variable change W = 8u, 
if" = w will then reduce Eqs (1.2) to the following form (omitting the tilde) 

u . -  uxx = --~2sin(u - w), w . -  c2wxx = sin(u - w) (4.1) 

This submodel is a possible generalization of  the Frer/kel-Kontorova (FK) dislocation model [4, 5]. 
While the FK model is concerned with the displacement of one part of  a crystal relative to another 
part, which is treated as if motionless, here it is assumed that both parts of the crystal are deformed 
(Fig. 2). Assuming that the half-planes x = const, y > 0 and x = const, y < 0are moving linearly along 
X, we obtain a model of  coupled particle chains (AB and CD in Fig. 2). Assuming that the potential of 
the non-linear interaction in long-wave motions is a harmonic function of the particle displacements 
in the chains and changing to dimensionless variables, one obtains Eqs (4.1) with 82 = m2/ml. The 
dimensional and dimensionless variables are related by 

a a ( a m 2 ] ~  =~t, Yc fZqx ,  ~ = m u ,  ~ v = m w ,  ~ -  
2~ .27t - \ 2nx J 

where x is the interaction constant, which has the dimensions of force. 
The transition from (4.1) to the FK model is obtained by letting 8 ---> 0 (ml >> m2). Indeed, setting u 

= 0, we obtain the well-known Sine-Gordon equation for the displacements of  the particles of mass 
m2 in this case, as obtained in the FK model. 

The first six operators of (3.3) constitute a basis of the Lie algebra of Eqs (4.1). Equations (4.1) also 
admit of  reflections (3.4). 

Let us consider a few solutions of Eqs (4.1). A solution invariant under the operatorX2 + oX 5 (where 
o~ is a non-negative constant) has the form (3.5), where p(t) satisfies the equation 

~=-~sinp- l . t ,  ~,=1+8 2, [.t=o~(c2-1) (4.2) 

,q 

c ~  

T 
! 
I 
I 

! 
I 

I / / 
I / 

I / 
J / 

I / 
I / l / 

# 
! 

iX 

!B 

Fig. 2. 
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The energy integral of  Eq. (4.2) may be written as 

(/~)2 + 2~,(1 - cos p)  + 2pp  - 2E" = 2 E  

E" = ~. - (Z. 2 - IX2)~ + lap0 ' Po = - arcsin Ix / 
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(4.3) 

If 

I~1 < ~ (4.4) 

then to any number E in the domain 

0 < E < 22~ - 7tl0-1 - 2R ° (4.5) 

there corresponds ~t bounded periodic solution of Eq. (4.2) describing non-linear oscillations about the 
equilibrium posi t ionp = P0 in the domainp  e Lol,p2], wherepx andp2 are the least and greatest real 
roots, respectively, of the equation ~.(1 - cos p)  + lap - E* = E in the interval ]-n + arcsin a&, 

+ arcsin a/~[. It is assumed that P0 ~ ]-x/2, ~/2[. 
Let a = 0. Then Eqs (4.2) describe the oscillations of a mathematical pendulum and can be integrated 

in elliptic functions (see, for example, [6]). The corresponding spatially homogeneous solution of Eqs 
(4.1), which describes oscillations of the particles about their equilibrium positions, is 

2 8 2 ,  a r c s i n { k s n [ ( l + 5 2 ) ~ t , k ] } = - f 2 w ,  O < k  < l  
u =  1+~" 

A solution invariant under the operator X1 + "oX~ + oX_4 (where a) is an arbitrary constant and a is 
c 2- 2 2 2  a non-negative con,;tant) has the form (3.7) when ~ # 1, c ,  (1 + 5 c )/(1 + 52), where the functionp(x 

- ~t) satisfies the equation 

p'" = -Ltsinp - Bt (4.6) 

where Et and P.1 arc; the same as in (3.8). 
If ~'1 < 0, the change of variable f f  = p + n reduces Eq. (4.6) to the form i f "  = - I ~11 sin f f  - 0-1. 

Therefore, we may assume when analysing Eq. (4.6) that 7~ 1 > 0, and the equation is then identical, 
apart from notation, with (4.3). Consequently, when conditions of the same type as (4.4) and (4.5) are 
satisfied, the solutions of  Eq. (4.6) are bounded and describe periodic travelling waves. When ~.1 > 0 
the waves propagate at velocities in the range (3.9); if ~.1 < 0, the velocities are in the range 

~ 2  ~ [0,  $ [  u ]M,  L[  ( 4 . 7 )  

In particular, when a = 0 we obtain the following solutions of Eqs (4.1) in the form of periodic 
travelling waves. 

"Fast" waves propagating at velocities in the range (3.9) 

u = 2 U  arcsin{k sn[X~ ( x  - ~0t), k]} = W w  

"Slow" waves propagating at velocities in the range (4.7) 

u = 2 U  arcs in{dn[ l~ , |  I ~j ( x  - ~ t ) , k ] }  = W w  

where 0 < k < 1. 
In the limiting non-linear case k = 1 the periodic "slow" waves become solitary travelling waves 

(solitons) 

u = 4 U  arctg{exp[I  2~ 11 )~ ( x  - Dr)]} = W w  

Using the reflections (3.4), one can obtain solutions with other sign combinations. 
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If ms "> m2 (6 ~ 0), the solitons may propagate at velocities ~)2 E [0,  C 2 [. In that ease the displacement 
of particles in the crystal is independent of the velocity of wave propagation. If the masses ml and m2 
are commensurable, the solitons may propagate at velocities in the range (4.7), i.e. we have 

10 2 E [0 ,  l [ k . . / ]M,  £.2[ i f  ¢.2 > 1 ; 'D 2 E [0 ,  C2[ k..) ] M ,  1 [ i f  c 2 < I 

Consequently, if the acoustic velocities of non-interacting chains are di f fe ren t  (c 2 :g: 1), a gap will appear 
in the velocity spectrum of the solitons, i.e. the system will act as a kind of soliton filter. Here the relative 
displacement ("upper" particles relative to "lower") will remain the same as in the FK model (per period 
of the chain), but the absolute displacement will depend on the velocity of wave propagation. 

5. On the basis of the solutions constructed in Sections 3 and 4 and the equivalence transformations 
just found, one can obtain certain solutions describing the long-wave dynamics of the above mechanical 
system when there are additional shear forces. 

Using (3.5) and the third equivalence transformation (2.2), with variables changed by the rules 

u - - - ) u l ~ ,  K--~ i l l 8  

and, Ic = o~(1 - cZ)/(1 + 8z), we obtain a solution 

(5.1) 

u - I o ~ p ( t )  = --~2w + O " "  

[the functionp(t) satisfies Eq. (3.6) or Eq. (4.2)] which describes oscillations of the particles in the "upper" 
and "lower" chains, on the assumption that both chains are subject to additional shear forces of equal 
magnitude but in opposite directions. 

Using (3.5) and the second equivalence transformation (2.2), with variables changed as in (5.1) 
and 

A = 0 ,  ,4 = ~ ( I - c 2 )  M 
8c 2 

we obtain a solution 

82 1 
u = ~ p ( t ) + t o ,  W = - l - - - - ~ p ( t l + t o ,  

0~(c 2 - i) 2 
O = 2c2(1+82 ) x 

(p(t) satisfies Eq. (3.6) or Eq. (4.2)) which describes the displacements of the particles when only the 
"upper" chain is subject to additional shear forces. 

Analogous solutions may be constructed for travelling waves. Indeed, using (3.7) and the first and 
third equivalence transformations, with the change of variable (5.1) and the substitution 

a(1 + 82)~ ct(c 2 - 1) 
a 8 = , a 9 = a l0  = 0,  K = , 

8t~ o 

we obtain a solution 

u = Up(x - Dt) = Ww 

(the function p(x  - ~t) satisfies Eq. (3.8) or Eq. (4.2)) which describes travelling waves in the chains, 
when the latter are subject to shear forces of equal magnitude but in opposite directions. 

Using the first and second transformations (2.2) with the same values of as, a9 and al0 and 
with 

A =0, A = {x(c2-1)(1+82c2) 
8c26 

and making the change (5.1), we obtain from (3.7) a solution 
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u=t~-I{~i2(~ 2 -c2)p(x-~t)-(l+82)to}, w=t~-1{(l-~2)p(x-x)t)-(l+82)to} 

(p(x - ~t) satisfies Eq. (3.8) or Eq. (4.6)). Here only the "upper" chain is subject to additional shear 
forces. 
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